Button Cell Tests with LSM/YSZ Cathodes in Air with Quantified **Cr Concentrations**

John S. Hardy, Christopher A. Coyle, James J. Neeway, Arun Devaraj, and Jeffry W. Stevenson

SIX TEST FIXTURES (THREE ARE SHOWN)

Na₂CO₃ was coated on reticulated alumina filters with a spec of 3 ppm Cr or less

 $CrO_3(g) + Na_2CO_3(s) \rightarrow Na_2CrO_4(s) + CO_2(g)$ $CrO_2(OH)_2(g) + Na_2CO_3(s) \rightarrow Na_2CrO_4(s) + CO_2(g) + H_2O(g)$

Thermodynamic calculations predict a reduction in the concentration of Cr-species in the air by more than 8 orders of magnitude due to Cr capture

FIXTURE VALIDATION TESTS

Parameters	Cr Mass (µg)	Measured mol% Cr in Air	Theoretical Eqm. mol% Cr	Meas/Theo		Chromia	appear	ed to hav	e blown	out of th	e containei
Cr2O3 Powder at 800C 3% Water	306.17	2.22E-08	5.33E-07	4.17E-02	Very similar ratios						
Cr2O3 pellet at 800C 3% Water	143.21	1.06E-08	5.33E-07	1.99E-02	Ę	1.0E-07		Cr in Cat		Chromia Pelle	ets O
Cr2O3 pellet at 600C 3% Water	35.83	2.62E-09	1.28E-07	2.05E-02	ncentratio	1.0E-08 1.0E-09			C	Chromia Pow	e e
Cr2O3 pellet at 800C Dry Air	0.46	3.44E-11	1.78E-09	1.93E-02	red Cr Cor	1.0E-10		_ <u>Concentration</u>	Measured wit	h No_Cr Source	
Cr2O3 pellet at 600C Dry Air	0.08	6.01E-12	2.62E-11	2.30E-01	Measu	1.0E-11	•		•		
No Cr Dry Air	0.70	5.18E-11	0	N/A		1.0E-12 1.0E	-11 1.0 The	E-10 1.01 oretical Equ	E-09 1.0 uilibrium C	E-08 1.0 Cr Concentr	E-07 1.0E-0 ation

FILTER CAPACITY TESTS AT HIGH Cr VOLATILITY

Chromia pellet at 800°C in humid air

Time (h)	mol% Cr in Air	Meas/Theo mol% Cr
195	7.08E-09	1.33E-02
312	7.17E-09	1.34E-02
602	1.15E-08	2.16E-02
811	5.41E-09	1.01E-02
1008	8.98E-09	1.68E-02

All are ~1-2% of predicted equilibrium concentration

No saturation after 1000 h

DETECTION LIMIT TESTS AT LOW Cr VOLATILITY

Time (h)	Cr ₂ O ₃ Temp (C)	Meas. Cr Conc. (ppt molar basis)	Meas./Pred. Cr C (%)	
1035	N/A	14.8	N/A	
1035	600	3.41	13.0	
1035	800	64.7	3.64	
2015	N/A	47.9	N/A	
2015	600	31.4	120	
2015	800	87.7	4.94	

• Measured Cr concentrations with chromia pellets at 600°C in dry air were less than with no chromia present.

- Measured Cr concentrations with chromia pellets at 800°C in dry air were above no chromia, but elevated above the typical 1-2% of predicted equilibrium concentration likely due to baseline Cr contributions.
- Working with an alumina foam manufacturer to get filter substrates made with 6N pure alumina to decrease baseline Cr from the 3 ppm Cr in current substrates

ELECTROCHEMICAL BUTTON CELL TESTS 850C Power Density 850C Operating Voltage 0.82 -Cr @ 800C Dry #2 -Cr @ 800C Dry #3 0.78 -No Cr #1 -No Cr #2 0.2 —No Cr #3 0.77 Time (Hours) Time (Hours) Pred. Eqm. Cr Conc. Meas./Pred. Cr Conc. Meas. Cr Conc. Cr₂O₃ (ppt molar basis) (ppt molar basis) (%) 800°C Pellet in Dry Air 1780 9.58 170 1780 800°C Pellet in Dry Air 41.4 2.33 800°C Pellet in Dry Air 1780 6.54 116 None in Dry Air 7.87 N/A None in Dry Air 38.4 N/A N/A None in Dry Air 171 **≤170 ppt Cr in Cathode Air caused 4%/kh degradation**

The authors wish to thank the NETL Program Managers for their valuable discussions. This work was funded by the U.S. Department of Energy's Solid Oxide Fuel Cell Core Technology Program.

